Quantitative and Network Biology
ebook
(0)
Applied Statistics for Network Biology
Methods in Systems Biology
by Various Authors
Part of the Quantitative and Network Biology series
The book introduces to the reader a number of cutting edge statistical methods which can e used for the analysis of genomic, proteomic and metabolomic data sets. In particular in the field of systems biology, researchers are trying to analyze as many data as possible in a given biological system (such as a cell or an organ). The appropriate statistical evaluation of these large scale data is critical for the correct interpretation and different experimental approaches require different approaches for the statistical analysis of these data. This book is written by biostatisticians and mathematicians but aimed as a valuable guide for the experimental researcher as well computational biologists who often lack an appropriate background in statistical analysis.
ebook
(0)
Statistical Modelling of Molecular Descriptors in QSAR/QSPR
by Various Authors
Part of the Quantitative and Network Biology series
This handbook and ready reference presents a combination of statistical, information-theoretic, and data analysis methods to meet the challenge of designing empirical models involving molecular descriptors within bioinformatics. The topics range from investigating information processing in chemical and biological networks to studying statistical and information-theoretic techniques for analyzing chemical structures to employing data analysis and machine learning techniques for QSAR/QSPR.
The high-profile international author and editor team ensures excellent coverage of the topic, making this a must-have for everyone working in chemoinformatics and structure-oriented drug design.
ebook
(0)
Statistical Diagnostics for Cancer
Analyzing High-Dimensional Data
by Various Authors
Part of the Quantitative and Network Biology series
This ready reference discusses different methods for statistically analyzing and validating data created with high-throughput methods. As opposed to other titles, this book focusses on systems approaches, meaning that no single gene or protein forms the basis of the analysis but rather a more or less complex biological network. From a methodological point of view, the well balanced contributions describe a variety of modern supervised and unsupervised statistical methods applied to various large-scale datasets from genomics and genetics experiments. Furthermore, since the availability of sufficient computer power in recent years has shifted attention from parametric to nonparametric methods, the methods presented here make use of such computer-intensive approaches as Bootstrap, Markov Chain Monte Carlo or general resampling methods. Finally, due to the large amount of information available in public databases, a chapter on Bayesian methods is included, which also provides a systematic means to integrate this information. A welcome guide for mathematicians and the medical and basic research communities.
ebook
(0)
Computational Network Theory
Theoretical Foundations and Applications
by Matthias Dehmer
Part of the Quantitative and Network Biology series
This comprehensive introduction to computational network theory as a branch of network theory builds on the understanding that such networks are a tool to derive or verify hypotheses by applying computational techniques to large scale network data.
The highly experienced team of editors and high-profile authors from around the world present and explain a number of methods that are representative of computational network theory, derived from graph theory, as well as computational and statistical techniques.
With its coherent structure and homogenous style, this reference is equally suitable for courses on computational networks.
ebook
(0)
Mathematical Foundations and Applications of Graph Entropy
by Various Authors
Part of the Quantitative and Network Biology series
This latest addition to the successful Network Biology series presents current methods for determining the entropy of networks, making it the first to cover the recently established Quantitative Graph Theory.
An excellent international team of editors and contributors provides an up-to-date outlook for the field, covering a broad range of graph entropy-related concepts and methods. The topics range from analyzing mathematical properties of methods right up to applying them in real-life areas.
Filling a gap in the contemporary literature this is an invaluable reference for a number of disciplines, including mathematicians, computer scientists, computational biologists, and structural chemists.
ebook
(0)
Advances in Network Complexity
by Various Authors
Part of the Quantitative and Network Biology series
A well-balanced overview of mathematical approaches to complex systems ranging from applications in chemistry and ecology to basic research questions on network complexity.
Matthias Dehmer, Abbe Mowshowitz, and Frank Emmert-Streib, well-known pioneers in the fi eld, have edited this volume with a view to balancing classical and modern approaches to ensure broad coverage of contemporary research problems.
The book is a valuable addition to the literature and a must-have for anyone dealing with network complexity and complexity issues.
ebook
(0)
Computational Network Analysis With R
Applications in Biology, Medicine and Chemistry
by Various Authors
Part of the Quantitative and Network Biology series
This new title in the well-established "Quantitative Network Biology" series includes innovative and existing methods for analyzing network data in such areas as network biology and chemoinformatics.
With its easy-to-follow introduction to the theoretical background and application-oriented chapters, the book demonstrates that R is a powerful language for statistically analyzing networks and for solving such large-scale phenomena as network sampling and bootstrapping.
Written by editors and authors with an excellent track record in the field, this is the ultimate reference for R in Network Analysis.
Showing 1 to 7 of 7 results