Astrobiology Perspectives on Life in the Universe
ebook
(0)
Origin of Life via Archaea
Shaped Droplets to Archaea First, with a Compendium of Archaea Micrographs
by Richard Gordon
Part of the Astrobiology Perspectives on Life in the Universe series
This book surveys the models for the origin of life and presents a new model starting with shaped droplets and ending with life as polygonal Archaea; it collects the most published micrographs of Archaea (discovered only in 1977), which support this conclusion, and thus provides the first visual survey of Archaea.
Origin of Life via Archaea's purpose is to add a new hypothesis on what are called "shaped droplets", as the starting point, for flat, polygonal Archaea, supporting the Vesicles First hypothesis. The book contains over 6000 distinct references and micrographs of 440 extant species of Archaea, 41% of which exhibit polygonal phenotypes. It surveys the intellectual battleground of the many ideas of the origin of life on earth, chemical equilibrium, autocatalysis, and biotic polymers.
This book contains 17 chapters, some coauthored, on a wide range of topics on the origin of life, including Archaea's origin, patterns, and species. It shows how various aspects of the origin of life may have occurred at chemical equilibrium, not requiring an energy source, contrary to the general assumption. For the reader's value, its compendium of Archaea micrographs might also serve many other interesting questions about Archaea.
One chapter presents a theory for the shape of flat, polygonal Archaea in terms of the energetics at the surface, edges and corners of the S-layer. Another shows how membrane peptides may have originated. The book also includes a large table of most extant Archaea, that is searchable in the electronic version. It ends with a chapter on problems needing further research.
Audience
This book will be used by astrobiologists, origin of life biologists, physicists of small systems, geologists, biochemists, theoretical and vesicle chemists.
ebook
(0)
Geoengineering and Climate Change
Methods, Risks, And Governance
by Martin Beech
Part of the Astrobiology Perspectives on Life in the Universe series
This important and timely book assembles expert scientists from both sides of the debate to discuss Earth-based and space-based climate intervention technologies including the scale, deployment, risk management, and moral philosophy behind these technologies.
The role that geoengineering might play, within the context of global warming amelioration, has long been contentious. For all this, geoengineering is about getting down and dirty with respect to the issue of climate intervention. Often dismissed as an option of last resort, geoengineering is now emerging as a key component in humanity's drive to bring the impacts of global warming under some form of mitigation and control. While geoengineering does not solve the fundamental problem of continued anthropomorphic carbon dioxide emissions, the root cause of global warming, it is an option that can effectively buy humanity some much-needed time. Time, that is, to act positively, and time to introduce meaningful emission reductions, and deploy large-scale sequestration technologies. Indeed, the failure to meaningfully corral greenhouse gas emission levels, and the slow development of large-scale carbon capture technologies, will, by the close of the 21st century, likely see global temperatures increase by at least 2 or 3 degrees above pre-industrial levels. What geoengineering can potentially do for us is to offset the more extreme climate change scenarios that are presently projected to come about. An integrated geoengineering program to cool Earth's atmosphere, running in parallel with the development of sequestration technologies, and substantial emission reductions, can work to limit the worst effects of climate change that will, without geoengineering, surely come about. Geoengineering is not a neutral or benign action, however, and if it is to be deployed, then much more research, and field testing of ideas and technologies is urgently needed.
The authors in this book present a cross-section of philosophies, engineering approaches, and reactions to the idea of geoengineering. Through their words, the reader is introduced to the historical and contemporary debate concerning the potential deployment of geoengineering actions. Indeed, there are many ways in which geoengineering, as a grand worldwide initiative, or as a combined set of independent actions, might proceed in both the near, and the deep future, and here the reader is introduced to these topics by experts in their field.
Audience
This book will be of interest to engineers, chemists, geologists, physicists, biologists, environmentalists, meteorologists, philosophers, mathematicians, computer modelers, and policy managers. General readers interested in geoengineering will find the book very readable and scientifically reliable.
Showing 1 to 2 of 2 results