Radon Transforms and the Rigidity of the Grassmannians
Part 156 of the Annals of Mathematics Studies series
Jacques Gasqui is Professor of Mathematics at Institut Fourier, Université de Grenoble I. Hubert Goldschmidt is Visiting Professor of Mathematics at Columbia University and Professeur des Universités in France.
This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric?
The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies that most Grassmannians are spectrally rigid to the first order. This is particularly important, for there are still few isospectrality results for positively curved spaces and these are the first such results for symmetric spaces of compact type of rank >1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces.
A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry.
Dynamics in One Complex Variable
Part 160 of the Annals of Mathematics Studies series
"John Milnor, Winner of the 2011 Abel Prize from the Norwegian Academy of Science and Letters" "John Willard Milnor, Winner of the 2011 Leroy P. Steele Prize for Lifetime Achievement, American Mathematical Society" John Milnor is Professor of Mathematics and Co-Director of the Institute for Mathematical Sciences at SUNY, Stony Brook. He is the author of Topology from the Differential Viewpoint, Singular Points of Complex Hypersurfaces, Morse Theory, Introduction to Algebraic K-Theory, Characteristic Classes (with James Stasheff), and Lectures on the H-Cobordism Theorem (Princeton).
This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. This subject is large and rapidly growing. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. This third edition contains a number of minor additions and improvements: A historical survey has been added, the definition of Lattés map has been made more inclusive, and the écalle-Voronin theory of parabolic points is described. The résidu itératif is studied, and the material on two complex variables has been expanded. Recent results on effective computability have been added, and the references have been expanded and updated.
Written in his usual brilliant style, the author makes difficult mathematics look easy. This book is a very accessible source for much of what has been accomplished in the field. "John Milnor's book provides a solid foundation and the kind of bird's eye view that perhaps only a mathematician of his caliber can offer."---William J. Satzer, MAA Reviews
Mathematical Aspects of Nonlinear Dispersive Equations
Part 163 of the Annals of Mathematics Studies series
Jean Bourgain is Professor of Mathematics at the Institute for Advanced Study in Princeton. In 1994, he won the Fields Medal. He is the author of Green's Function Estimates for Lattice Schrödinger Operators and Applications (Princeton). Carlos E. Kenig is Professor of Mathematics at the University of Chicago. He is a fellow of the American Academy of Arts and Sciences and the author of Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. S. Klainerman is Professor of Mathematics at Princeton University. He is a MacArthur Fellow and Bocher Prize recipient. He is the coauthor of The Global Nonlinear Stability of the Minkowski Space (Princeton).
This collection of new and original papers on mathematical aspects of nonlinear dispersive equations includes both expository and technical papers that reflect a number of recent advances in the field. The expository papers describe the state of the art and research directions. The technical papers concentrate on a specific problem and the related analysis and are addressed to active researchers.
The book deals with many topics that have been the focus of intensive research and, in several cases, significant progress in recent years, including hyperbolic conservation laws, Schrödinger operators, nonlinear Schrödinger and wave equations, and the Euler and Navier-Stokes equations. "The volume contains valuable contributions to the area of nonlinear PDEs, making it indispensable for all researchers interested in partial differential equations and their applications."---Radu Precup, Mathematica
Weyl Group Multiple Dirichlet Series
Type A Combinatorial Theory (AM-175)
Part 175 of the Annals of Mathematics Studies series
Ben Brubaker is assistant professor of mathematics at Massachusetts Institute of Technology. Daniel Bump is professor of mathematics at Stanford University. Solomon Friedberg is professor of mathematics at Boston College.
Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics.
These interesting functions may be described as Whittaker coefficients of Eisenstein series on metaplectic groups, but this characterization doesn't readily lead to an explicit description of the coefficients. The coefficients may be expressed as sums over Kashiwara crystals, which are combinatorial analogs of characters of irreducible representations of Lie groups. For Cartan Type A, there are two distinguished descriptions, and if these are known to be equal, the analytic properties of the Dirichlet series follow. Proving the equality of the two combinatorial definitions of the Weyl group multiple Dirichlet series requires the comparison of two sums of products of Gauss sums over lattice points in polytopes. Through a series of surprising combinatorial reductions, this is accomplished.
The book includes expository material about crystals, deformations of the Weyl character formula, and the Yang-Baxter equation.
Computational Aspects of Modular Forms and Galois Representations
How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime
Part 176 of the Annals of Mathematics Studies series
Bas Edixhoven is professor of mathematics at the University of Leiden. Jean-Marc Couveignes is professor of mathematics at the University of Toulouse le Mirail. Robin de Jong is assistant professor at the University of Leiden. Franz Merkl is professor of applied mathematics at the University of Munich. Johan Bosman is a postdoctoral researcher at the Institut für Experimentelle Mathematik in Essen, Germany.
Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program.
The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields.
The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations. "The book is well written and provides sufficient detail and reminders about the big picture. It gives a nice exposition of the material involved and should be accessible to graduate students or researchers with a sufficient background in number theory and algebraic geometry."---Jeremy A. Rouse, Mathematical Reviews Clippings
Hypoelliptic Laplacian and Orbital Integrals
Part 177 of the Annals of Mathematics Studies series
Jean-Michel Bismut is professor of mathematics at the Université Paris-Sud, Orsay.
This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed.
Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof.
The Ambient Metric
Part 178 of the Annals of Mathematics Studies series
Charles Fefferman is the Herbert E. Jones, Jr., '43 University Professor of Mathematics at Princeton University. C. Robin Graham is professor of mathematics at the University of Washington.
This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincaré metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics.
The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincaré metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincaré metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established. A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory. "[T]his careful exposition has been well worth the wait!"---Michael G. Eastwood, Mathematical Reviews Clippings "It is concise, but detailed, accurate, and comprehensive in its treatment of the topics it covers, including their technical details. The book will be of interest to anyone working in, or using, conformal geometry or closely related structures for mathematics, theoretical physics, or physical applications."---Rod Gover, SIAM Review "Nowadays, it seems that any of the more subtle advances in local conformal differential geometry depend on the ambient metric in an essential way. Such advances continue apace. The careful exposition provided by the ambient metric has been well worth the wait!"---Michael Eastwood, Bulletin of the American Mathematical Society
Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces
Part 179 of the Annals of Mathematics Studies series
Joram Lindenstrauss is professor emeritus of mathematics at the Hebrew University of Jerusalem. David Preiss is professor of mathematics at the University of Warwick. Jaroslav Tier is associate professor of mathematics at Czech Technical University in Prague.
This book makes a significant inroad into the unexpectedly difficult question of existence of Fréchet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. Because the question turns out to be closely related to porous sets in Banach spaces, it provides a bridge between descriptive set theory and the classical topic of existence of derivatives of vector-valued Lipschitz functions. The topic is relevant to classical analysis and descriptive set theory on Banach spaces. The book opens several new research directions in this area of geometric nonlinear functional analysis.
The new methods developed here include a game approach to perturbational variational principles that is of independent interest. Detailed explanation of the underlying ideas and motivation behind the proofs of the new results on Fréchet differentiability of vector-valued functions should make these arguments accessible to a wider audience. The most important special case of the differentiability results, that Lipschitz mappings from a Hilbert space into the plane have points of Fréchet differentiability, is given its own chapter with a proof that is independent of much of the work done to prove more general results. The book raises several open questions concerning its two main topics. "The book is well written--as one would expect from its distinguished authors, including the late Joram Lindestrauss (1936-2012). It contains many fascinating and profound results. It no doubt will become an important resource for anyone who is seriously interested in the differentiability of functions between Banach spaces."---J. Borwein and Liangjin Yao, Mathematical Reviews Clippings "[T]his is a very deep and complete study on the differentiability of Lipschitz mappings between Banach spaces, an unavoidable reference for anyone seriously interested in this topic."---Daniel Azagra, European Mathematical Society "We should be grateful to (the late) Joram Lindenstrauss, David Preiss, and Jaroslav Tiser for providing us with this splendid book which dives into the deepest fields of functional analysis, where the basic but still strange operation called differentiation is investigated. More than a century after Lebesgue, our understanding is not complete. But thanks to the contribution of these three authors, and thanks to this book, we know a fair share of beautiful theorems and challenging problems."---Gilles Godefroy, Bulletin of the American Mathematical Society
Convolution and Equidistribution
Sato-Tate Theorems for Finite-Field Mellin Transforms
Part 180 of the Annals of Mathematics Studies series
Nicholas M. Katz is professor of mathematics at Princeton University. He is the author or coauthor of six previous titles in the Annals of Mathematics Studies: Arithmetic Moduli of Elliptic Curves (with Barry Mazur); Gauss Sums, Kloosterman Sums, and Monodromy Groups; Exponential Sums and Differential Equations; Rigid Local Systems; Twisted L-Functions and Monodromy; and Moments, Monodromy, and Perversity.
Convolution and Equidistribution explores an important aspect of number theory--the theory of exponential sums over finite fields and their Mellin transforms--from a new, categorical point of view. The book presents fundamentally important results and a plethora of examples, opening up new directions in the subject.
The finite-field Mellin transform (of a function on the multiplicative group of a finite field) is defined by summing that function against variable multiplicative characters. The basic question considered in the book is how the values of the Mellin transform are distributed (in a probabilistic sense), in cases where the input function is suitably algebro-geometric. This question is answered by the book's main theorem, using a mixture of geometric, categorical, and group-theoretic methods.
By providing a new framework for studying Mellin transforms over finite fields, this book opens up a new way for researchers to further explore the subject. "The book is written in a clear and enlightening style. The author provides the reader with many examples that are developed throughout a dozen chapters. These examples help understand and clarify the depth and the variety of applications of the beautiful main equidistribution statement that relies on rather complicated and subtle algebrageometric arguments."---Florent Jouve, Mathematical Reviews Clippings "The book provides the reader with much material around the question of the equidistribution of the angles if one fixes f and varies over the multiplicative character x. More than one hundred pages of examples provide the reader with great insight in the different applications of the main theorem. This turns the book into a very good basis for research in this area."---Manfred G. Madritsch, Zentralblatt MATH "Once a certain basic understanding is reached, this book, like the others written by N. Katz, reveals itself to be very precisely and sharply written, and to be full of riches. And finally, this theory shows spectacularly how some of the most abstract ideas of algebra and algebraic geometry may be essential to solving extremely concrete problems."---Emmanuel Kowalski, Bulletin of the American Mathematical Society
Some Problems of Unlikely Intersections in Arithmetic and Geometry
Part 181 of the Annals of Mathematics Studies series
Umberto Zannier is professor of mathematics at the Scuola Normale Superiore di Pisa in Pisa, Italy. He is the author of Lecture Notes on Diophantine Analysis and the editor of Diophantine Geometry.
This book considers the so-called Unlikely Intersections, a topic that embraces well-known issues, such as Lang's and Manin-Mumford's, concerning torsion points in subvarieties of tori or abelian varieties. More generally, the book considers algebraic subgroups that meet a given subvariety in a set of unlikely dimension. The book is an expansion of the Hermann Weyl Lectures delivered by Umberto Zannier at the Institute for Advanced Study in Princeton in May 2010.
The book consists of four chapters and seven brief appendixes, the last six by David Masser. The first chapter considers multiplicative algebraic groups, presenting proofs of several developments, ranging from the origins to recent results, and discussing many applications and relations with other contexts. The second chapter considers an analogue in arithmetic and several applications of this. The third chapter introduces a new method for approaching some of these questions, and presents a detailed application of this (by Masser and the author) to a relative case of the Manin-Mumford issue. The fourth chapter focuses on the André-Oort conjecture (outlining work by Pila). "Zannier's book is well written and a pleasure to read. . . . [T]he author always makes an effort to point out key ideas and key steps, so a reader who wants to read and understand the complete proofs in this technically demanding field will find this monograph to be an extremely helpful entree into the subject. . . . [T]he reviewer highly recommends Zannier's book as an excellent survey of and introduction to the important and hot topic of unlikely intersections in arithmetic geometry."---Joseph H. Silverman, Bulletin of the AMS "This book is indeed a great source of knowledge and inspiration for everybody interested in the unlikely intersection problems. The author must be commended for doing this job, and doing it so well."---Yuri Bilu, Mathematical Reviews Clippings
Mumford-Tate Groups and Domains
Their Geometry and Arithmetic
Part 183 of the Annals of Mathematics Studies series
Mark Green is professor of mathematics at the University of California, Los Angeles and is Director Emeritus of the Institute for Pure and Applied Mathematics. Phillip A. Griffiths is Professor Emeritus of Mathematics and former director at the Institute for Advanced Study in Princeton. Matt Kerr is assistant professor of mathematics at Washington University in St. Louis.
Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers.
Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject. "The brilliance of the results and their broad spectrum of their applications makes this book an outstanding piece. Yet, there is more to write and to develop: the authors suggest the existence of future lines of research for a next book."---Jonathan Sanchez Hernandez, European Mathematical Society
The Gross-Zagier Formula on Shimura Curves
Part 184 of the Annals of Mathematics Studies series
Xinyi Yuan is assistant professor of mathematics at Princeton University. Shou-wu Zhang is professor of mathematics at Princeton University and Columbia University. Wei Zhang is assistant professor of mathematics at Columbia University.
This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations.
The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof of its coherent analogue: the Waldspurger formula, which relates the periods of integrals and the special values of L-series by means of Weil representations. The Gross-Zagier formula is then reformulated in terms of incoherent Weil representations and Kudla's generating series. Using Arakelov theory and the modularity of Kudla's generating series, the proof of the Gross-Zagier formula is reduced to local formulas.
The Gross-Zagier Formula on Shimura Curves will be of great use to students wishing to enter this area and to those already working in it.
Degenerate Diffusion Operators Arising in Population Biology
Part 185 of the Annals of Mathematics Studies series
Charles L. Epstein is the Thomas A. Scott Professor of Mathematics at the University of Pennsylvania. Rafe Mazzeo is professor of mathematics at Stanford University.
This book provides the mathematical foundations for the analysis of a class of degenerate elliptic operators defined on manifolds with corners, which arise in a variety of applications such as population genetics, mathematical finance, and economics. The results discussed in this book prove the uniqueness of the solution to the Martingale problem and therefore the existence of the associated Markov process.
Charles Epstein and Rafe Mazzeo use an "integral kernel method" to develop mathematical foundations for the study of such degenerate elliptic operators and the stochastic processes they define. The precise nature of the degeneracies of the principal symbol for these operators leads to solutions of the parabolic and elliptic problems that display novel regularity properties. Dually, the adjoint operator allows for rather dramatic singularities, such as measures supported on high codimensional strata of the boundary. Epstein and Mazzeo establish the uniqueness, existence, and sharp regularity properties for solutions to the homogeneous and inhomogeneous heat equations, as well as a complete analysis of the resolvent operator acting on Hölder spaces. They show that the semigroups defined by these operators have holomorphic extensions to the right half-plane. Epstein and Mazzeo also demonstrate precise asymptotic results for the long-time behavior of solutions to both the forward and backward Kolmogorov equations.
Chow Rings, Decomposition of the Diagonal, and the Topology of Families
Part 187 of the Annals of Mathematics Studies series
Claire Voisin has been a senior researcher at France's National Center for Scientific Research since 1986.
In this book, Claire Voisin provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The volume is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by Voisin. The book focuses on two central objects: the diagonal of a variety-and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups-as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by Voisin looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others. "This dense, fascinating book by Voisin is a report of some of the exciting discoveries she has made in the quest of the secrets of algebraic cycles."---Alberto Collino, Zentralblatt MATH "[An advanced] reader will find a rich collection of ideas as well as detailed machinery with which to attack difficult problems in the field. Any complex geometer interested in the interplay between algebraic cycles, Hodge theory and algebraic topology should have this book on his or her shelf."---C. A. M. Peters, Mathematical Reviews Clippings
Hangzhou Lectures on Eigenfunctions of the Laplacian
Part 188 of the Annals of Mathematics Studies series
Christopher D. Sogge is the J. J. Sylvester Professor of Mathematics at Johns Hopkins University. He is the author of Fourier Integrals in Classical Analysis and Lectures on Nonlinear Wave Equations.
Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic.
Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity. "The book is very well written. . . . I would definitely recommend it to anybody who wants to learn spectral geometry."---Leonid Friedlander, Mathematical Reviews
Multi-parameter Singular Integrals, Volume I
Part 189 of the Annals of Mathematics Studies series
Brian Street is assistant professor of mathematics at the University of Wisconsin–Madison.
This book develops a new theory of multi-parameter singular integrals associated with Carnot-Carathéodory balls. Brian Street first details the classical theory of Calderón-Zygmund singular integrals and applications to linear partial differential equations. He then outlines the theory of multi-parameter Carnot-Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. Street then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. Multi-parameter Singular Integrals will interest graduate students and researchers working in singular integrals and related fields.
Descent in Buildings
Part 190 of the Annals of Mathematics Studies series
Bernhard Mühlherr is professor of mathematics at the University of Giessen in Germany. Holger P. Petersson is professor emeritus of mathematics at the University of Hagen in Germany. Richard M. Weiss is the William Walker Professor of Mathematics at Tufts University. He is the author of The Structure of Spherical Buildings, Quadrangular Algebras and The Structure of Affine Buildings (all Princeton) and the coauthor with Jacques Tits of Moufang Polygons.
Descent in Buildings begins with the resolution of a major open question about the local structure of Bruhat-Tits buildings. The authors then put their algebraic solution into a geometric context by developing a general fixed point theory for groups acting on buildings of arbitrary type, giving necessary and sufficient conditions for the residues fixed by a group to form a kind of subbuilding or "form" of the original building. At the center of this theory is the notion of a Tits index, a combinatorial version of the notion of an index in the relative theory of algebraic groups. These results are combined at the end to show that every exceptional Bruhat-Tits building arises as a form of a "residually pseudo-split" Bruhat-Tits building. The book concludes with a display of the Tits indices associated with each of these exceptional forms.
This is the third and final volume of a trilogy that began with Richard Weiss' The Structure of Spherical Buildings and The Structure of Affine Buildings. "An impressive tour de force."---Bertrand Rémy, Jahresbericht der DMV
Classification of Pseudo-Reductive Groups
Part 191 of the Annals of Mathematics Studies series
Brian Conrad is professor of mathematics at Stanford University. Gopal Prasad is the Raoul Bott Professor of Mathematics at the University of Michigan.
In the earlier monograph Pseudo-reductive Groups, Brian Conrad, Ofer Gabber, and Gopal Prasad explored the general structure of pseudo-reductive groups. In this new book, Classification of Pseudo-reductive Groups, Conrad and Prasad go further to study the classification over an arbitrary field. An isomorphism theorem proved here determines the automorphism schemes of these groups. The book also gives a Tits-Witt type classification of isotropic groups and displays a cohomological obstruction to the existence of pseudo-split forms. Constructions based on regular degenerate quadratic forms and new techniques with central extensions provide insight into new phenomena in characteristic 2, which also leads to simplifications of the earlier work. A generalized standard construction is shown to account for all possibilities up to mild central extensions.
The results and methods developed in Classification of Pseudo-reductive Groups will interest mathematicians and graduate students who work with algebraic groups in number theory and algebraic geometry in positive characteristic. "This book is beautiful and will be at the origin of many advances in the general theory of arbitrary algebraic groups."---Bertrand Rémy, MathSciNet
Non-Archimedean Tame Topology and Stably Dominated Types
Part 192 of the Annals of Mathematics Studies series
Ehud Hrushovski is professor of mathematics at the Hebrew University of Jerusalem. He is the coauthor of Finite Structures with Few Types (Princeton) and Stable Domination and Independence in Algebraically Closed Valued Fields. François Loeser is professor of mathematics at Pierre-and-Marie-Curie University in Paris.
Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools.
For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry.
This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness.
Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods.
No previous knowledge of non-archimedean geometry is assumed. Model-theoretic prerequisites are reviewed in the first sections. "A major achievement, both in rigid algebraic geometry, and as an application of model-theoretic and stability-theoretic methods to algebraic geometry."---Anand Pillay, MathSciNet
The p-adic Simpson Correspondence
Part 193 of the Annals of Mathematics Studies series
Ahmed Abbes is director of research at the French National Center for Scientific Research (CNRS) and the Institute of Advanced Scientific Studies (IHÉS), France. Michel Gros is a researcher at the CNRS. Takeshi Tsuji is a professor in the Graduate School of Mathematical Sciences at the University of Tokyo.
The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper smooth variety over a p-adic field in terms of linear algebra-namely Higgs bundles. This book undertakes a systematic development of the theory following two new approaches, one by Ahmed Abbes and Michel Gros, the other by Takeshi Tsuji. The authors mainly focus on generalized representations of the fundamental group that are p-adically close to the trivial representation.
The first approach relies on a new family of period rings built from the torsor of deformations of the variety over a universal p-adic thickening defined by J. M. Fontaine. The second approach introduces a crystalline-type topos and replaces the notion of Higgs bundles with that of Higgs isocrystals. The authors show the compatibility of the two constructions and the compatibility of the correspondence with the natural cohomologies. The last part of the volume contains results of wider interest in p-adic Hodge theory. The reader will find a concise introduction to Faltings' theory of almost étale extensions and a chapter devoted to the Faltings topos. Though this topos is the general framework for Faltings' approach in p-adic Hodge theory, it remains relatively unexplored. The authors present a new approach based on a generalization of P. Deligne's covanishing topos. "The authors give a very detailed introduction to the theory, smoothing out some difficulties by introducing new concepts."---Gerd Faltings, Zentralblatt MATH
Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra
Part 194 of the Annals of Mathematics Studies series
Isroil A. Ikromov is professor of mathematics at Samarkand State University in Uzbekistan. Detlef Müller is professor of mathematics at the University of Kiel in Germany.
This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface.
Isroil Ikromov and Detlef Müller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Müller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept. They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger.
Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.