Aspartic Acid Proteases as Therapeutic Targets
Part 45 of the Methods & Principles in Medicinal Chemistry series
In this ground-breaking practical reference, the family of aspartic acid proteases is described from a drug developer's perspective. The first part provides a general introduction to the family of aspartic acid proteases, their physiological functions, molecular structure and inhibition. Parts two to five present various case studies of successful protease inhibitor drug design and development, as well as current and potential uses of such inhibitors in pharmaceutical medicine, covering the major therapeutic targets HIV-1 protease, renin, beta-secretase, gamma-secretase,plasmepsins and fungal proteases.
A ready reference aimed primarily at professionals in the pharmaceutical industry, as well as for anyone studying proteases and their function.
Chemokine Receptors as Drug Targets
Part 46 of the Methods & Principles in Medicinal Chemistry series
Chemokines are hormone-like signaling molecules secreted by cells to signal infection and guide the immune response. Following a decade of basic chemokine research, the pharmaceutical industry has now begun to exploit this crucial signaling pathway for the development of innovative drugs against AIDS, cancer, neural and autoimmune diseases. Here is the first reference focusing on these novel drug development opportunities.
Opening with a general introduction on chemokine function and chemokine receptor biology, the second part covers the known implications of these signaling molecules in human diseases, such as cancer, neural disorders, and viral infection, including AIDS. The third part systematically surveys current drug development efforts at targeting individual chemokine receptors, as well as other chemokine interaction partners, including up-to-date reports from the pharmaceutical industry.
Prodrugs and Targeted Delivery
Towards Better ADME Properties
Part 47 of the Methods & Principles in Medicinal Chemistry series
This topical reference and handbook addresses the chemistry, pharmacology, toxicology and the patentability of prodrugs, perfectly mirroring the integrated approach prevalent in today's drug design. It summarizes current experiences and strategies for the rational design of prodrugs, beginning at the early stages of the development process, as well as discussing organ-and site-selective prodrugs.
Every company employing medicinal chemists will be interested in this practice-oriented overview of a key strategy in modern drug discovery and development.
Virtual Screening
Principles, Challenges, and Practical Guidelines
Part 48 of the Methods & Principles in Medicinal Chemistry series
Drug discovery is all about finding small molecules that interact in a desired way with larger molecules, namely proteins and other macromolecules in the human body. If the three-dimensional structures of both the small and large molecule are known, their interaction can be tested by computer simulation with a reasonable degree of accuracy. Alternatively, if active ligands are already available, molecular similarity searches can be used to find new molecules. This virtual screening can even be applied to compounds that have yet to be synthesized, as opposed to "real" screening that requires cost-and labor-intensive laboratory testing with previously synthesized drug compounds.
Unique in its focus on the end user, this is a real "how to" book that does not presuppose prior experience in virtual screening or a background
in computational chemistry. It is both a desktop reference and practical guide to virtual screening applications in drug discovery, offering a comprehensive and up-to-date overview. Clearly divided into four major sections, the first provides a detailed description of the methods required for and applied in virtual screening, while the second discusses the most important challenges in order to improve the impact and success of this technique. The third and fourth, practical parts contain practical guidelines and several case studies covering the most
important scenarios for new drug discovery, accompanied by general guidelines for the entire workflow of virtual screening studies.
Throughout the text, medicinal chemists from academia, as well as from large and small pharmaceutical companies report on their experience and pass on priceless practical advice on how to make best use of these powerful methods.
Protein Kinases as Drug Targets
Part 49 of the Methods & Principles in Medicinal Chemistry series
This timely guide to kinase inhibitor drug development is the first to cover the entire drug pipeline, from target identification to compound development and clinical application. Edited by the pioneers in the field, on the drug development side this ready reference discusses classical medicinal chemistry approaches as well as current chemical genomics strategies. On the clinical side, both current and future therapeutic application areas for kinase inhibitor drugs are addressed, with a strong focus on oncology drugs.
Backed by recent clinical experience with first-generation drugs in the battle against various forms of cancer, this is crucial reading for medicinal, pharmaceutical and biochemists, molecular biologists, and oncologists, as well as those working in the pharmaceutical industry.
Antiviral Drug Strategies
Part 50 of the Methods & Principles in Medicinal Chemistry series
By focusing on general molecular mechanisms of antiviral drugs rather than therapies for individual viruses, this ready reference provides the critical knowledge needed to develop entirely novel therapeutics and to target new viruses.
It begins with a general discussion of antiviral strategies, followed by a broad survey of known viral targets, such as reverse transcriptases, proteases, neuraminidases, RNA polymerases, helicases and primases, as well as their known inhibitors. The final section contains several cases studies of recent successful antiviral drug development.
Edited by Erik de Clercq, the world authority on small molecule antiviral drugs, who has developed more new antivirals than anyone else.
Pharmacokinetics and Metabolism in Drug Design
Part 51 of the Methods & Principles in Medicinal Chemistry series
In this new edition of a bestseller, all the contents have been brought upto-date by addressing current standards and best practices in the assessment and prediction of ADMET properties. Although the previous chapter layout has been retained, substantial revisions have been made, with new topics such as pro-drugs, active metabolites and transporters covered in detail in a manner useful to the Drug Discovery scientist. The authors discuss the parameters and processes important for the absorption, distribution and retention of drug compounds in the body, plus the potential problems created by their transformation into toxic byproducts.
While aimed at all those dealing professionally with the development and application of pharmaceutical substances, the readily comprehensible style makes this book equally suitable for students of pharmacy and related subjects. Uniquely comprehensive, the book relates physicochemistry and chemical structure to pharmacokinetic properties and ultimately drug efficacy and safety.
Microwaves in Organic and Medicinal Chemistry
Part 52 of the Methods & Principles in Medicinal Chemistry series
Tailored to the needs of medicinal and natural products chemists, the second edition of this unique handbook brings the contents up to speed,
almost doubling the amount of chemical information with an additional volume.
As in the predecessor, a short introductory section covers the theoretical background and evaluates currently available instrumentation and
equipment. The main part of the book then goes on to systematically survey the complete range of published microwave-assisted synthesis
methods from their beginnings in the 1990s to mid-2011, drawing on data from more than 5,000 reports and publications. Throughout, the
focus is on those reactions, reagents and reaction conditions that work, and that are the most relevant for medicinal and natural products
chemistry. A much expanded section is devoted to combinatorial, high throughput and flow chemistry methods.
Protein-Ligand Interactions
Part 53 of the Methods & Principles in Medicinal Chemistry series
Innovative and forward-looking, this volume focuses on recent achievements in this rapidly progressing field and looks at future potential for development.
The first part provides a basic understanding of the factors governing protein-ligand interactions, followed by a comparison of key experimental methods (calorimetry, surface plasmon resonance, NMR) used in generating interaction data. The second half of the book is devoted to insilico methods of modeling and predicting molecular recognition and binding, ranging from first principles-based to approximate ones. Here, as elsewhere in the book, emphasis is placed on novel approaches and recent improvements to established methods. The final part looks at unresolved challenges, and the strategies to address them.
With the content relevant for all drug classes and therapeutic fields, this is an inspiring and often-consulted guide to the complexity of protein-ligand interaction modeling and analysis for both novices and experts.
Bioisosteres in Medicinal Chemistry
Part 54 of the Methods & Principles in Medicinal Chemistry series
Written with the practicing medicinal chemist in mind, this is the first modern handbook to systematically address the topic of bioisosterism.
As such, it provides a ready reference on the principles and methods of bioisosteric replacement as a key tool in preclinical drug development.
The first part provides an overview of bioisosterism, classical bioisosteres and typical molecular interactions that need to be considered,
while the second part describes a number of molecular databases as sources of bioisosteric identification and rationalization. The third part
covers the four key methodologies for bioisostere identification and replacement: physicochemical properties, topology, shape, and overlays of
protein-ligand crystal structures. In the final part, several real-world examples of bioisosterism in drug discovery projects are discussed.
With its detailed descriptions of databases, methods and real-life case studies, this is tailor-made for busy industrial researchers with little time for reading, while remaining easily accessible to novice drug developers due to its systematic structure and introductory section.
Reactive Drug Metabolites
Part 55 of the Methods & Principles in Medicinal Chemistry series
Closing a gap in the scientific literature, this first comprehensive introduction to the topic is based on current best practice in one of the largest
pharmaceutical companies worldwide. The first chapters trace the development of our understanding of drug metabolite toxicity, covering basic concepts and techniques in the process, while the second part details chemical toxicophores that are prone to reactive metabolite formation. This section also reviews the various drug-metabolizing enzymes that can participate in catalyzing reactive metabolite formation, including a discussion of the structure-toxicity relationships for drugs. Two chapters are dedicated to the currently hot topics of herbal constituents and IADRs.
The next part covers current strategies and approaches to evaluate the reactive metabolite potential of new drug candidates, both by predictive
and by bioanalytical methods. There then follows an in-depth analysis of the toxicological potential of the top 200 prescription drugs, illustrating
the power and the limits of the toxicophore concept, backed by numerous case studies. Finally, a risk-benefi t approach to managing the toxicity risk of reactive metabolite-prone drugs is presented.
Since the authors carefully develop the knowledge needed, from fundamental considerations to current industry standards, no degree in pharmacology is required to read this book, making it perfect for medicinal chemists without in-depth pharmacology training.
Protein-Protein Interactions in Drug Discovery
Part 56 of the Methods & Principles in Medicinal Chemistry series
Treating protein-protein interactions as a novel and highly promising class of drug targets, this volume introduces the underlying strategies step by step, from the biology of PPIs to biophysical and computational methods for their investigation.
The main part of the book describes examples of protein targets for which small molecule modulators have been developed, covering such diverse fields as cancer, autoimmune disorders and infectious diseases. Tailor-made for the practicing medicinal chemist, this ready reference includes a wide selection of case studies taken straight from the development pipeline of major pharmaceutical companies to illustrate the power and potential of this approach.
From the contents:
* Prediction of intra-and inter-species protein-protein interactions facilitating systems biology studies
* Modulators of protein-protein interactions: The importance of Three-Dimensionality
* Interactive technologies for leveraging the known chemistry of anchor residues
* SH3 Domains as Drug Targets
* P53 MDM2 Antagonists: Towards Non Genotoxic Anticancer Treatments
* Inhibition of LFA-1/ICAM interaction for treatment of autoimmune diseases
* The PIF-binding pocket of AGC kinases
* Peptidic inhibitors of protein-protein interactions for cell adhesion receptors
* The REPLACE Strategy for generating Non-ATP competitive Inhibitors of Cell-Cycle Protein Kinases
and more
Data Mining in Drug Discovery
Part 57 of the Methods & Principles in Medicinal Chemistry series
Written for drug developers rather than computer scientists, this monograph adopts a systematic approach to mining scientifi c data sources, covering all key steps in rational drug discovery, from compound screening to lead compound selection and personalized medicine. Clearly divided into four sections, the first part discusses the different data sources available, both commercial and non-commercial, while the next section looks at the role and value of data mining in drug discovery. The third part compares the most common applications and strategies for polypharmacology, where data mining can substantially enhance the research effort. The final section of the book is devoted to systems biology approaches for compound testing.
Throughout the book, industrial and academic drug discovery strategies are addressed, with contributors coming from both areas, enabling an informed decision on when and which data mining tools to use for one's own drug discovery project.
Scaffold Hopping in Medicinal Chemistry
Part 58 of the Methods & Principles in Medicinal Chemistry series
This first systematic treatment of the concept and practice of scaffold hopping shows the tricks of the trade and provides invaluable guidance for the reader's own projects.
The first section serves as an introduction to the topic by describing the concept of scaffolds, their discovery, diversity and representation, and their importance for finding new chemical entities. The following part describes the most common tools and methods for scaffold hopping, whether topological, shape-based or structure-based. Methods such as CATS, Feature Trees, Feature Point Pharmacophores (FEPOPS), and SkelGen are discussed among many others. The final part contains three fully documented real-world examples of successful drug development projects by scaffold hopping that illustrate the benefits of the approach for medicinal chemistry.
While most of the case studies are taken from medicinal chemistry, chemical and structural biologists will also benefit greatly from the insights presented here.
Medicinal Chemistry Approaches to Personalized Medicine
Part 59 of the Methods & Principles in Medicinal Chemistry series
Edited by two renowned medicinal chemists who have pioneered the development of personalized therapies in their respective fields, this authoritative analysis of what is already possible is the first of its kind, and the only one to focus on drug development issues.
Numerous case studies from the first generation of "personalized drugs" are presented, highlighting the challenges and opportunities for pharmaceutical development. While the majority of these examples are taken from the field of cancer treatment, other key emerging areas, such as neurosciences and inflammation, are also covered.
With its careful balance of current and future approaches, this handbook is a prime knowledge source for every drug developer, and one that will remain up to date for some time to come.
From the content:
* Discovery of Predictive Biomarkers for Anticancer Drugs
* Discovery and Development of Vemurafenib
* Targeting Basal-Cell Carcinoma
* G-Quadruplexes as Therapeutic Targets in Cancer
* From Human Genetics to Drug Candidates: An Industrial Perspective on LRRK2 Inhibition as a Treatment for Parkinson's Disease
* Therapeutic Potential of Kinases in Asthma
* DNA Damage Repair Pathways and Synthetic Lethality
* Medicinal Chemistry in the Context of the Human Genome
and many more.
Phosphodiesterases and Their Inhibitors
Part 61 of the Methods & Principles in Medicinal Chemistry series
Written by the pioneers of Viagra, the first blockbuster PDE inhibitor drug.
Beginning with a review of the first wave of phosphodiesterase (PDE) inhibitors, this book focuses on new and emerging PDE targets and their inhibitors. Drug development options for all major human PDE families are discussed and cover diverse therapeutic fields, such as neurological/psychiatric, cardiovascular/metabolic, pain, and allergy/respiratory diseases. Finally, emerging chemotherapeutic applications of PDE inhibitors against malaria and other tropical diseases are discussed.
In vivo Models for Drug Discovery
Part 62 of the Methods & Principles in Medicinal Chemistry series
This one-stop reference is the first to present the complete picture-covering all relevant organisms, from single cells to mammals, as well as all major disease areas, including neurological disorders, cancer and infectious diseases.
Addressing the needs of the pharmaceutical industry, this unique handbook adopts a broad perspective on the use of animals in the early part of the drug development process, including regulatory rules and limitations, as well as numerous examples from real-life drug development projects.
After a general introduction to the topic, the expert contributors from research-driven pharmaceutical companies discuss the basic considerations of using animal models, including ethical issues. The main part of the book systematically surveys the most important disease areas for current drug development, from cardiovascular to endocrine disorders, and from infectious to neurological diseases. For each area, the availability of animal models for target validation, hit finding and lead profiling is reviewed, backed by numerous examples of both successes and failures among the use of animal models. The whole is rounded off with a discussion of perspectives and challenges.
Key knowledge for drug researchers in industry as well as academia.
Drug Metabolism Prediction
Part 63 of the Methods & Principles in Medicinal Chemistry series
The first professional reference on this highly relevant topic, for drug developers, pharmacologists and toxicologists.
The authors provide more than a systematic overview of computational tools and knowledge bases for drug metabolism research and their underlying principles. They aim to convey their expert knowledge distilled from many years of experience in the field. In addition to the fundamentals, computational approaches and their applications, this volume provides expert accounts of the latest experimental methods for investigating drug metabolism in four dedicated chapters. The authors discuss the most important caveats and common errors to consider when working with experimental data.
Collating the knowledge gained over the past decade, this practice-oriented guide presents methods not only used in drug development, but also in the development and toxicological assessment of cosmetics, functional foods, agrochemicals, and additives for consumer goods, making it an invaluable reference in a variety of disciplines.
Predictive Toxicology
From Vision to Reality
Part 64 of the Methods & Principles in Medicinal Chemistry series
Tailored to the needs of scientists developing drugs, chemicals, cosmetics and other products this one-stop reference for medicinal chemists covers all the latest developments in the field of predictive toxicology and its applications in safety assessment.
With a keen emphasis on novel approaches, the topics have been tackled by selected expert scientists, who are familiar with the theoretical scientific background as well as with the practical application of current methods. Emerging technologies in toxicity assessment are introduced and evaluated in terms of their predictive power, with separate sections on computer predictions and simulation methods, novel in vitro systems including those employing stem cells, toxicogenomics and novel biomarkers. In each case, the most promising methods are discussed and compared to classical in vitro and in vivo toxicology assays. Finally, an outlook section discusses such forward-looking topics as immunotoxicology assessment and novel regulatory requirements.
With its wealth of methodological knowledge and its critical evaluation of modern approaches, this is a valuable guide for toxicologists working in pharmaceutical development, as well as in safety assessment and the regulation of drugs and chemicals.
Antitargets and Drug Safety
Part 66 of the Methods & Principles in Medicinal Chemistry series
With its focus on emerging concerns of kinase and GPCR-mediated antitarget effects, this vital reference for drug developers addresses one of the hot topics in drug safety now and in future.
Divided into three major parts, the first section deals with novel technologies and includes the utility of adverse event reports to drug discovery, the translational aspects of preclinical safety findings, broader computational prediction of drug side-effects, and a description of the serotonergic system. The main part of the book looks at some of the most common antitarget-mediated side effects, focusing on hepatotoxicity in drug safety, cardiovascular toxicity and signaling effects via kinase and GPCR anti-targets. In the final section, several case studies of recently developed drugs illustrate how to prevent anti-target effects and how big pharma deals with them if they occur. The more recent field of systems pharmacology has gained prominence and this is reflected in chapters dedicated to the utility in deciphering and modeling anti-targets. The final chapter is concerned with those compounds that inadvertently elicit CNS mediated adverse events, including a pragmatic description of ways to mitigate these types of safety risks.
Written as a companion to the successful book on antitargets by Vaz and Klabunde, this new volume focuses on recent progress and new classes, methods and case studies that were not previously covered.
Innovative Dosage Forms
Design and Development at Early Stage
Part 76 of the Methods & Principles in Medicinal Chemistry series
Teaches future and current drug developers the latest innovations in drug formulation design and optimization
This highly accessible, practice-oriented book examines current approaches in the development of drug formulations for preclinical and clinical studies, including the use of functional excipients to enhance solubility and stability. It covers oral, intravenous, topical, and parenteral administration routes. The book also discusses safety aspects of drugs and excipients, as well as regulatory issues relevant to formulation.
Innovative Dosage Forms: Design and Development at Early Stage starts with a look at the impact of the polymorphic form of drugs on the preformulation and formulation development. It then offers readers reliable strategies for the formulation development of poorly soluble drugs. The book also studies the role of reactive impurities from the excipients on the formulation shelf life, preclinical formulation assessment of new chemical entities, and regulatory aspects for formulation design. Other chapters cover innovative formulations for special indications, including oncology injectables, delayed release and depot formulations, accessing pharmacokinetics of various dosage forms, physical characterization techniques to assess amorphous nature, novel formulations for protein oral dosage, and more.
-Provides information that is essential for the drug development effort
-Presents the latest advances in the field and describes in detail innovative formulations, such as nanosuspensions, micelles, and cocrystals
-Describes current approaches in early pre-formulation to achieve the best in vivo results
-Addresses regulatory and safety aspects, which are key considerations for pharmaceutical companies
-Includes case studies from recent drug development programs to illustrate the practical challenges of preformulation design
Innovative Dosage Forms: Design and Development at Early Stage provides valuable benefits to interdisciplinary drug discovery teams working in industry and academia and will appeal to medicinal chemists, pharmaceutical chemists, and pharmacologists.
Solid State Development and Processing of Pharmaceutical Molecules
Salts, Cocrystals, and Polymorphism
Part of the Methods & Principles in Medicinal Chemistry series
Solid State Development and Processing of Pharmaceutical Molecules
A guide to the lastest industry principles for optimizing the production of solid state active pharmaceutical ingredients
Solid State Development and Processing of Pharmaceutical Molecules is an authoritative guide that covers the entire pharmaceutical value chain. The authors-noted experts on the topic-examine the importance of the solid state form of chemical and biological drugs and review the development, production, quality control, formulation, and stability of medicines.
The book explores the most recent trends in the digitization and automation of the pharmaceutical production processes that reflect the need for consistent high quality. It also includes information on relevant regulatory and intellectual property considerations. This resource is aimed at professionals in the pharmaceutical industry and offers an in-depth examination of the commercially relevant issues facing developers, producers and distributors of drug substances. This important book:
• Provides a guide for the effective development of solid drug forms
• Compares different characterization methods for solid state APIs
• Offers a resource for understanding efficient production methods for solid state forms of chemical and biological drugs
• Includes information on automation, process control, and machine learning as an integral part of the development and production workflows
• Covers in detail the regulatory and quality control aspects of drug development
Written for medicinal chemists, pharmaceutical industry professionals, pharma engineers, solid state chemists, chemical engineers, Solid State Development and Processing of Pharmaceutical Molecules reviews information on the solid state of active pharmaceutical ingredients for their efficient development and production.
Target Discovery and Validation
Methods and Strategies for Drug Discovery
Part of the Methods & Principles in Medicinal Chemistry series
The modern drug developers? guide for making informed choices among the diverse target identification methods
Target Discovery and Validation: Methods and Strategies for Drug Discovery offers a hands-on review of the modern technologies for drug target identification and validation. With contributions from noted industry and academic experts, the book addresses the most recent chemical, biological, and computational methods. Additionally, the book highlights techologies that are applicable to ?difficult? targets and drugs directed at multiple targets, including chemoproteomics, activity-based protein profiling, pathway mapping, genome-wide association studies, and array-based profiling.
Throughout, the authors highlight a range of diverse approaches, and target validation studies reveal how these methods can support academic and drug discovery scientists in their target discovery and validation research. This resource:
-Offers a guide to identifying and validating targets, a key enabling technology without which no new drug development is possible
-Presents the information needed for choosing the appropriate assay method from the ever-growing range of available options
-Provides practical examples from recent drug development projects, e. g. in kinase inhibitor profiling
Written for medicinal chemists, pharmaceutical professionals, biochemists, biotechnology professionals, and pharmaceutical chemists, Target Discovery and Validation explores the current methods for the identification and validation of drug targets in one comrpehensive volume. It also includes numerous practical examples.
Fragment-Based Drug Discovery
Lessons and Outlook
Part of the Methods & Principles in Medicinal Chemistry series
From its origins as a niche technique more than 15 years ago, fragment-based approaches have become a major tool for drug and ligand discovery, often yielding results where other methods have failed. Written by the pioneers in the field, this book provides a comprehensive overview of current methods and applications of fragment-based discovery, as well as an outlook on where the field is headed.
The first part discusses basic considerations of when to use fragment-based methods, how to select targets, and how to build libraries in the chemical fragment space. The second part describes established, novel and emerging methods for fragment screening, including empirical as well as computational approaches. Special cases of fragment-based screening, e. g. for complex target systems and for covalent inhibitors are also discussed. The third part presents several case studies from recent and on-going drug discovery projects for a variety of target classes, from kinases and phosphatases to targeting protein-protein interaction and epigenetic targets.
Natural Products in Medicinal Chemistry
Part of the Methods & Principles in Medicinal Chemistry series
The inspiration provided by biologically active natural products to conceive of hybrids, congeners, analogs and unnatural variants is discussed by experts in the field in 16 highly informative chapters.
Using well-documented studies over the past decade, this timely monograph demonstrates the current importance and future potential of natural products as starting points for the development of new drugs with improved properties over their progenitors.
The examples are chosen so as to represent a wide range of natural products with therapeutic relevance among others, as anticancer agents, antimicrobials, antifungals, antisense nucleosides, antidiabetics, and analgesics.
From the content:
* Part I: Natural Products as Sources of Potential Drugs and Systematic Compound Collections
* Part II: From Marketed Drugs to Designed Analogs and Clinical Candidates
* Part III: Natural Products as an Incentive for Enabling Technologies
* Part IV: Natural Products as Pharmacological Tools
* Part V: Nature: The Provider, the Enticer, and the Healer
Early Drug Development
Bringing a Preclinical Candidate to the Clinic
Part of the Methods & Principles in Medicinal Chemistry series
This one-stop reference systematically covers key aspects in early drug development that are directly relevant to the discovery phase and are required for first-in-human studies.
Its broad scope brings together critical knowledge from many disciplines, ranging from process technology to pharmacology to intellectual property issues.
After introducing the overall early development workflow, the critical steps of early drug development are described in a sequential and enabling order: the availability of the drug substance and that of the drug product, the prediction of pharmacokinetics and -dynamics, as well as that of drug safety. The final section focuses on intellectual property aspects during early clinical development. The emphasis throughout is on recent case studies to exemplify salient points, resulting in an abundance of practice-oriented information that is usually not available from other sources.
Aimed at medicinal chemists in industry as well as academia, this invaluable reference enables readers to understand and navigate the challenges in developing clinical candidate molecules that can be successfully used in phase one clinical trials.
Neglected Tropical Diseases
Drug Discovery and Development
Part of the Methods & Principles in Medicinal Chemistry series
A drug discovery reference to the crippling tropical diseases that affect more than 1 billion people.
Neglected Tropical Diseases is the first book of its kind to offer a guide that follows the World Health organization’s list of neglected tropical diseases. The authors, all are experts on the topic address the development of effective treatments for 12 crippling infectious diseases that affect almost 20% of the world’s population.
The book includes information on the common approaches and the most important factors that lead to the development of new drugs for treating tropical diseases. Individual chapters review 12 neglected tropical diseases that are grouped by infectious agent, from viruses to bacteria to eukaryotic parasites. For each of these diseases, the book explains the unmet medical need and explores the current and potential drug discovery strategies. The book also includes information on potential drug compounds derived from natural products. This important book:
-Ties together information from different sources for developing novel treatments for neglected tropical diseases
-Is aligned with WHO?s initiative to eradicate tropical diseases
-Outlines current and potential drugs for treating tropical diseases
-Provides a standard reference for the entire field
Written for medicinal chemists, pharmaceutical chemists, pharmaceutical industry, virologists, parasitologists, and specialists on tropics medicine, Neglected Tropical Diseases offers an essential guide and a systematic reference for the development of successful treatments for 12 crippling infectious diseases.
Lead Generation
Methods and Strategies
Part of the Methods & Principles in Medicinal Chemistry series
In this comprehensive two-volume resource on the topic senior lead generation medicinal chemists present a coherent view of the current methods and strategies in industrial and academic lead generation. This is the first book to combine both standard and innovative approaches in comparable breadth and depth, including several recent successful lead generation case studies published here for the first time.
Beginning with a general discussion of the underlying principles and strategies, individual lead generation approaches are described in detail, highlighting their strengths and weaknesses, along with all relevant bordering disciplines like e.g., target identification and validation, predictive methods, molecular recognition or lead quality matrices. Novel led generation approaches for challenging targets like DNA-encoded library screening or chemical biology approaches are treated here side by side with established methods as high throughput and affinity screening, knowledge- or fragment-based lead generation, and collaborative approaches. Within the entire book, a very strong focus is given to highlight the application of the presented methods, so that the reader will be able to learn from real life examples. The final part of the book presents several lead generation case studies taken from different therapeutic fields, including diabetes, cardiovascular and respiratory diseases, neuroscience, infection and tropical diseases.
The result is a prime knowledge resource for medicinal chemists and for every scientist involved in lead generation.
Open Access Databases and Datasets for Drug Discovery
Part of the Methods & Principles in Medicinal Chemistry series
Open Access Databases and Datasets for Drug Discovery
Timely resource discussing the future of data-driven drug discovery and the growing number of open-source databases
With an overview of 90 freely accessible databases and datasets on all aspects of drug design, development, and discovery, Open Access Databases and Datasets for Drug Discovery is a comprehensive guide to the vast amount of "free data" available to today's pharmaceutical researchers. The applicability of open-source data for drug discovery and development is analyzed, and their usefulness in comparison with commercially available tools is evaluated.
The most relevant databases for small molecules, drugs and druglike substances, ligand design, protein 3D structures (both experimental and calculated), and human drug targets are described in depth, including practical examples of how to access and work with the data. The first part is focused on databases for small molecules, followed by databases for macromolecular targets and diseases. The final part shows how to integrate various open-source tools into the academic and industrial drug discovery and development process.
Contributed to and edited by experts with long-time experience in the field, Open Access Databases and Datasets for Drug Discovery includes information on:
• An extensive listing of open access databases and datasets for computer-aided drug design
• PubChem as a chemical database for drug discovery, DrugBank Online, and bioisosteric replacement for drug discovery supported by the SwissBioisostere database
• The Protein Data Bank (PDB) and macromolecular structure data supporting computer-aided drug design, and the SWISS-MODEL repository of 3D protein structures and models
• PDB-REDO in computational aided drug design (CADD), and using Pharos/TCRD for discovering druggable targets
Unmatched in scope and thoroughly reviewing small and large open data sources relevant for rational drug design, Open Access Databases and Datasets for Drug Discovery is an essential reference for medicinal and pharmaceutical chemists, and any scientists involved in the drug discovery and drug development.
Biomolecular Simulations in Structure-Based Drug Discovery
Part of the Methods & Principles in Medicinal Chemistry series
A guide to applying the power of modern simulation tools to better drug design
Biomolecular Simulations in Structure-based Drug Discovery offers an up-to-date and comprehensive review of modern simulation tools and their applications in real-life drug discovery, for better and quicker results in structure-based drug design. The authors describe common tools used in the biomolecular simulation of drugs and their targets and offer an analysis of the accuracy of the predictions. They also show how to integrate modeling with other experimental data.
Filled with numerous case studies from different therapeutic fields, the book helps professionals to quickly adopt these new methods for their current projects. Experts from the pharmaceutical industry and academic institutions present real-life examples for important target classes such as GPCRs, ion channels and amyloids as well as for common challenges in structure-based drug discovery. Biomolecular Simulations in Structure-based Drug Discovery is an important resource that:
-Contains a review of the current generation of biomolecular simulation tools that have the robustness and speed that allows them to be used as routine tools by non-specialists
-Includes information on the novel methods and strategies for the modeling of drug-target interactions within the framework of real-life drug discovery and development
-Offers numerous illustrative case studies from a wide-range of therapeutic fields
-Presents an application-oriented reference that is ideal for those working in the various fields
Written for medicinal chemists, professionals in the pharmaceutical industry, and pharmaceutical chemists, Biomolecular Simulations in Structure-based Drug Discovery is a comprehensive resource to modern simulation tools that complement and have the potential to complement or replace laboratory assays for better results in drug design.
Epigenetic Drug Discovery
Part of the Methods & Principles in Medicinal Chemistry series
This broad view of epigenetic approaches in drug discovery combines methods and strategies with individual targets, including new and largely unexplored ones such as sirtuins and methyl-lysine reader proteins.
Presented in three parts-Introduction to Epigenetics, General Aspects and Methodologies, and Epigenetic Target Classes-it covers everything any drug researcher would need in order to know about targeting epigenetic mechanisms of disease.
Epigenetic Drug Discovery is an important resource for medicinal chemists, pharmaceutical researchers, biochemists, molecular biologists, and molecular geneticists.
Drug Selectivity
An Evolving Concept in Medicinal Chemistry
Part of the Methods & Principles in Medicinal Chemistry series
The book "Drug Selectivity - An Evolving Concept in Medicinal Chemistry" provides a current overview and comprehensive compilation for medicinal chemists that discusses the effects of aiming for multiple targets on the entire drug development process.
The result is a broad survey of current and future strategies for drug selectivity in medicinal chemistry with theoretical but also practical aspects. Different strategies are presented and evaluated, such as various design approaches, merged multiple ligands, discovery technologies and a broad range of successful examples of unselective drugs taken from all major disease areas. With its wide-ranging view of an emerging new paradigm in drug development, this handbook is of prime importance for every medicinal and pharmaceutical chemist.
Flow and Microreactor Technology in Medicinal Chemistry
Part of the Methods & Principles in Medicinal Chemistry series
Learn to master a powerful technology to enable a faster drug discovery workflow
The ultimate dream for medicinal chemists is the ability to synthesize new drug-like compounds with the push of a button. The key to synthesizing chemical compounds more quickly and accurately lies in computer-controlled technologies that can be optimized by machine learning. Recent developments in computer-controlled automated syntheses that rely on miniature flow reactors-with integrated analysis of the resulting products-provide a workable technology for synthesizing new chemical substances very quickly and with minimal effort.
In Flow and Microreactor Technology in Medicinal Chemistry, early adopters of this ground-breaking technology describe its current and potential uses in medicinal chemistry. Based on successful examples of the use of flow and microreactor synthesis for drug-like compounds, the book introduces current as well as emerging uses for automated synthesis in a drug discovery context.
Flow and Microreactor Technology in Medicinal Chemistry readers will also find:
• Numerous case studies that address the most common applications of this technology in the day-to-day work of medicinal chemists
• How to integrate flow synthesis with drug discovery
• How to perform enantioselective reactions under continuous flow conditions
Flow and Microreactor Technology in Medicinal Chemistry is a valuable practical reference for medicinal chemists, organic chemists, and natural products chemists, whether they are working in academia or in the pharmaceutical industry.
Targeted Drug Delivery
Part of the Methods & Principles in Medicinal Chemistry series
Targeted Drug Delivery
Novel approaches in targeted drug delivery for both small molecule and biopharmaceutical drugs
Targeted Drug Delivery explores a new frontier in drug research that has become a focus for developing novel medications. The work discusses a wide range of approaches for targeting small molecules as well as peptide and macromolecular drugs, from prodrugs to drug conjugates to drug carriers and devices, helping readers to stay up to date on the latest developments in the field.
The following key topics are addressed:
• Antibody conjugates, prodrugs, and suicide gene therapeutics
• Protac technology for selectively degrading target proteins
• Delivery of nucleic acid drugs
• Novel drug carriers, such as liposomes, vesicles, and nanoparticles
• Unmet medical needs for which there is a large market potential, such as viral infections and cancer
For chemists, pharmacologists, and professionals in the wider pharmaceutical industry, Targeted Drug Delivery is a comprehensive guide on how to solve the greatest challenge in treating many diseases: delivering a pharmaceutically active substance to the target tissue in the body.
Protein Therapeutics
Part of the Methods & Principles in Medicinal Chemistry series
In this practice-oriented two volume handbook, professionals from some of the largest biopharmaceutical companies and top academic researchers address the key concepts and challenges in the development of protein pharmaceuticals for medicinal chemists and drug developers of all trades.
Following an introduction tracing the rapid development of the protein therapeutics market over the last decade, all currently used therapeutic protein scaffolds are surveyed, from human and non-human antibodies to antibody mimetics, bispecific antibodies and antibody-drug conjugates. This ready reference then goes on to review other key aspects such as pharmacokinetics, safety and immunogenicity, manufacture, formulation and delivery. The handbook then takes a look at current key clinical applications for protein therapeutics, from respiratory and inflammation to oncology and immune-oncology, infectious diseases and rescue therapy. Finally, several exciting prospects for the future of protein therapeutics are highlighted and discussed.
Animal Models for Human Cancer
Discovery and Development of Novel Therapeutics
Part of the Methods & Principles in Medicinal Chemistry series
Based on results from the past ten years, this ready reference systematically describes how to prepare, carry out, and evaluate animal studies for cancer therapies, addressing the widely recognized lack of reliable and reproducible results.
Following a short historical introduction and a discussion of the ethics surrounding animal experiments, the book describes correct study design as well as the handling and housing of animals. It then goes on to describe the animal models available for different cancer types, from natural cancer models in mice and dogs to humanized animals. An evaluation of previously unpublished long-term data from the Swiss canine and feline cancer registry is also included. The final part of the book reviews the lessons learned over the last decade on how to interpret data from animal studies for improving human therapy and gives recommendations for future drug development.
Transporters as Drug Targets
Part of the Methods & Principles in Medicinal Chemistry series
As opposed to other books on the topic, this volume is unique in also covering emerging transporter targets.
Following a general introduction to the importance of targeting transporter proteins with drugs, the book systematically presents individual transporter classes and explains their pharmacology and physiology. The text covers all transporter families with known or suspected importance as drug targets, including neurotransmitter transporters, ABC transporters, glucose transporters and organic ion transporters. The final part discusses recent advances in structural studies of transport proteins, assay methods for transport activity, and the systems biology of transporters and their regulation.
With its focus on drug development issues, this authoritative overview is required reading for researchers in industry and academia targeting transport proteins for the treatment of disease.
RNA as a Drug Target
The Next Frontier for Medicinal Chemistry
Part of the Methods & Principles in Medicinal Chemistry series
Discover a new paradigm in drug discovery that greatly expands the space of addressable drug targets and potential novel drugs
Existing paradigms for drug discovery have focused largely on enzymes and other proteins as drug targets. In recent years, however, different varieties of ribonucleic acids have emerged as a viable focus for target-based drug discovery, with the potential to revolutionize the strategy and approach for this essential step in the drug development process.
RNA as a Drug Target: The Next Frontier for Medicinal Chemistry offers a practice-oriented introduction to developing drug-like small molecules that selectively modulate both coding and non-coding RNAs. Beginning with a description and characterization of existing druggable RNAs, the book discusses how to approach different RNA targets for drug discovery. The result is a crucial resource for targeting RNAs and creating the next generation of life-saving pharmaceuticals.
RNA as a Drug Target readers will also find:
• A complete "toolbox" for working with RNA, from structure determination to screening and lead generation techniques
• A wide range of addressable targets and mechanisms, including splicing modulation, riboswitches, targeted degradation, and more
• Authoritative discussion of the potential of RNA-targeted small molecule therapeutics for drugging the epitranscriptome
RNA as a Drug Target provides an expert introduction to a new frontier in pharmaceutical research for medicinal chemists, biochemists, molecular biologists, and members of the pharmaceutical industry.
New Drug Development for Known and Emerging Viruses
Part of the Methods & Principles in Medicinal Chemistry series
Discusses how to fight Ebola, SARS Corona, and other known or emerging human viruses by building on the successes in antiviral therapy of the past decades
Written by leading medicinal chemists from academia and industry, this book discusses the entire field of antiviral drug discovery and development from a medicinal chemistry perspective, focusing on antiviral drugs, targets, and viral disease mechanisms. It provides an outlook on emerging pathogens such as Ebola, Zika, West Nile, Lassa, and includes a chapter on SARS Coronoavirus-2 causing the present pandemic.
New Drug Development for Known and Emerging Viruses describes the discovery and development process for antiviral agents for different classes of viruses and targets based on the experiences from the nine human viruses for which approved drugs are on the market (HIV, HCV, Influenza, RSV, HBV, HPV, HCMV, HSV, and VZV). It covers the properties and potential of 20 classes of currently approved antivirals, including combination drugs, and looks at novel antiviral strategies against emerging viruses. Covers the entire field of antiviral drug discovery and development Addresses the need for antiviral drugs to combat major health threats such as Ebola, Zika, West Nile, and SARS Coronavirus-2 Summarizes the successes of the past 15 years in developing ground-breaking medicines against 9 major human viruses, both from the medicinal chemistry and the pharmacological angle Discusses practical and strategic challenges in the drug discovery and development process, including screening technologies, latency, and toxicity issues
New Developments in Antiviral Drugs is an important book for medicinal chemists, pharmaceutical chemists, virologists, and epidemiologists, and will be of great interest to those in the pharmaceutical industry and public health agencies.
Thermodynamics and Kinetics of Drug Binding
Part of the Methods & Principles in Medicinal Chemistry series
This practical reference for medicinal and pharmaceutical chemists combines the theoretical background with modern methods as well as applications from recent lead finding and optimization projects.
Divided into two parts on the thermodynamics and kinetics of drug-receptor interaction, the text provides the conceptual and methodological basis for characterizing binding mechanisms for drugs and other bioactive molecules. It covers all currently used methods, from experimental approaches, such as ITC or SPR, right up to the latest computational methods. Case studies of real-life lead or drug development projects are also included so readers can apply the methods learned to their own projects. Finally, the benefits of a thorough binding mode analysis for any drug development project are summarized in an outlook chapter written by the editors.